Problematiche connesse alla radioprotezione della popolazione nell'impiego di sostanze radioattive non sigillate a scopo diagnostico o terapeutico

Principali riferimenti tecnici e normativi

- Radiation Protection following Iodine-131 therapy (exposures due to outpatients or discharged in-patients)
 http://europa.eu.int/comm/environment/radprot/97/97.htm
- NCRP Report N. 123, Screening models for releases of radionuclides to atmosphere, surface water, and ground, I e II, 1996
- D.Lgs 187/2000
- Generic Models for Use in Assessing the Impact of Discharges of Radioactive Substances to the Environment, IAEA Safety Reports Series No. 19 http://www-pub.iaea.org/MTCD/publications/publications.asp\

Potenziali fonti di rischio per la popolazione

Irradiazione diretta
della popolazione
transitante nella vicinanze

Irradiazione
della popolazione
a seguito della dimissione
del paziente

Immissione di rifiuti radioattivi in ambiente

Emergenze (incendio, allagamento...)

Vincoli di dose (Allegato 1, parte I, D. L.vo 187/00)

 Vengono fissati vincoli di dose per le persone che volontariamente e consapevolmente assistono pazienti sottoposti a indagini o trattamenti con radiazioni ionizzanti:

» adulti 18 - 60 anni : 3 mSv

» adulti > 60 anni : 10 mSv

Limiti di dose

- L'esposizione degli individui della popolazione deve essere tale da garantire il rispetto del limite di dose di 1 mSv/anno
- In pratica il documento CE "Protezione dalle radiazioni 97" raccomanda un vincolo di dose efficace assorbita dagli individui della popolazione (colleghi di lavoro, persone del pubblico con cui il paziente può entrare in contatto, ad esempio durante il viaggio di ritorno a casa, ecc.) pari a 0.3 mSv

Criteri di dimissione del paziente: aspetti generali

- L'attività ambulatoriale e le dimissioni dei pazienti portatori di radioattività dovranno avvenire in modo che:
 - » la dose assorbita dagli individui della popolazione (colleghi di lavoro, persone del pubblico con cui il paziente può entrare in contatto) sia inferiore al vincolo di dose per singola fonte di radiazione
 - » la dose assorbita dai familiari o da eventuali persone che, in modo consapevole e volontariamente, assistono o convivono con i pazienti, sia inferiore a vincoli di dose opportunamente fissati

E' necessario che venga ben evidenziato ai pazienti la loro responsabilità verso i familiari, gli amici e le altre persone del pubblico per quanto riguarda una eventuale loro irradiazione e che nel consenso informato sottoscritto dal paziente figuri anche il suo impegno ad osservare le prescrizioni e raccomandazioni che gli verranno date e a curare che vengano seguite quelle riguardanti i familiari

- La situazione ideale dal punto di vista protezionistico, è l'effettuazione dei trattamenti in ricovero protetto, dotato di scarichi contenuti, con accesso regolamentato, personale specializzato e professionalmente esposto
- In due giorni il 95% delle ¹³¹I non assunto dalla tiroide viene escreto con urine e feci. Il contenimento delle deiezioni riduce perciò al minimo il rischio di contaminazione ambientale e personale
- Nella maggior parte dei paesi, inclusa l'Italia, non è realistica per fattori economico-sociali (carenza di strutture, costi, tempi di attesa) l'ipotesi di effettuare tutti i trattamenti in regime di ricovero

Paziente dimesso rischi da irradiazione esterna

- Sono i più importanti, soprattutto per quanto riguarda l'impiego dello ¹³¹I
- La valutazione dell'irradiazione esterna può essere effettuata utilizzando i dati di:
 - » O'Doherty et al. (1993)
 - » Barrington et al. (1999) (trattamento degli ipertiroidismi)
 - » Barrington et al. (1996)(terapia ablativa e terapia delle metastasi)

Dosi (mSv) ai familiari per 400 MBq (residui) di ¹³¹I

Bambini	Senza raccomandazioni <i>(1)</i>	Raccomand. Generali (2)	Restrizioni severe (per 1 settimana) (2)
< 2 anni	20	2	1.3
3-10 anni	6-11.5	1	0.6
Coniugi	18.5	8	1.4
Altri adulti	2.2	2	0.6
Nota <i>(1)</i> Dose (calcolata	Commissio	one Europea, 1998

Scuola di Specializzazione in Fisica Sanitaria e Ospedaliera di Milano - Corso di radioprotezione

(2) Dosi misurate (mediana)

Durata delle restrizioni a seconda della attività residua (alla dimissione) di ¹³¹I

•800 MBq

3 settimane

•400 MBq

2 settimane

•200 MBq

1 settimana

•100 MBq

4 giorni

•60 MBq

1 giorno

Nota. Gli stessi periodi valgono per attività superiori di un terzo se somministrate ambulatorialmente

Commissione Europea, 1998

Cosa dice la norma?

- Il D.Lgs 187/2000 stabilisce che siano fornite al paziente istruzioni scritte volte a ridurre le dosi per le persone a stretto contatto e a fornire informazioni sui rischi delle radiazioni ionizzanti Un sistema di istruzioni per lo 131I comprende:
 - Norme per ridurre l'esposizione (distanza, letti separati ecc.): sono le più importanti
 - » Norme per prevenire la contaminazione interna (uso impianti igienici, posate, biancheria, ecc.): importanti nei primi giorni, soprattutto nei trattamenti ambulatoriali

Dosi (mSv) ai familiari

Bambini	Per un'attività somministrata di 400 MBq di ¹³¹ I	Per un'attività residua di 400 MBq di ¹³¹ I
< 2 anni	0.7	1.3
3-10 anni	0.3	0.6
Coniugi	0.7	1.4
Altri adulti	0.3	0.6

Commissione Europea, 1998

Dose efficace mediana (mSv) per 600 MBq (residui alla dimissione o somministrati ambulatorialmente)

Coniugi Bambini Altri familiari
2.4 0.68 0.66

La dimissione di pazienti trattati con ¹³¹I è consentita allorchè l'attività residua sia uguale o inferiore a 600 MBq.

Dati da: Buchan, 1971; Jacobson, 1978; O'Doherty, 1993; Thomson, 1993; Wassermann, 1993; Barrington 1993 e 1999

Prescrizioni per assicurare il rispetto di 0.3 mSv agli individui del pubblico (ore di utilizzo dei mezzi pubblici)

	Tempo dopo la somministrazione								
	0	8 h	1 g	2 g	3 g	4 g			
600 MBq	0.25	0.5	1.25	1.5	2	2.5			
(ipertiroidismo)									
3700 MBq	/	/	0.25	0.25	1	1.5			
(terapia ablativa)									
7400 MBq	/	/	/	/	0.5	3			
(terapia metastasi)									

Prescrizioni per assicurare il rispetto di 0.3 mSv agli individui del pubblico (giorni di attesa prima di riprendere il lavoro)

	a	b
600 MBq	15 (8 *)	5
(ipertiroidismo)		
3700 MBq	14	5
(terapia ablativa)		
7400 MBq	3	2
(terapia metastasi)		

a: 1 m per 8 ore al giorno

b: 2 m per 8 ore al giorno

* EANM,1996

Paziente dimesso rischi da irradiazione interna

- Comporta normalmente dosi almeno di un ordine di grandezza inferiori a quelle dovute all'irradiazione esterna
- Solo in casi particolari (ad es. paziente incontinente) può essere presa in considerazione l'opportunità di ricoverare il paziente
- Il rischio non può essere trascurato quando il paziente sia a contatto con bambini

Dose equivalente alla tiroide di familiari per incorporazione tiroidea di ¹³¹I (mSv)

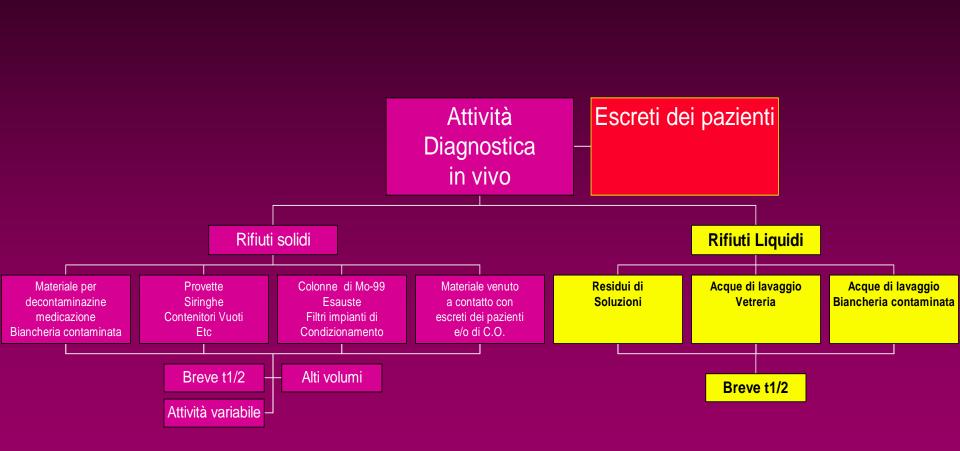
	Età (anni)					
	< 10	10-20	> 20			
mediana	2.76	0.15	0.21			
massima	13.3	0.47	1.24			

Valori ricavati dai dati di Jacobson et al., 1978

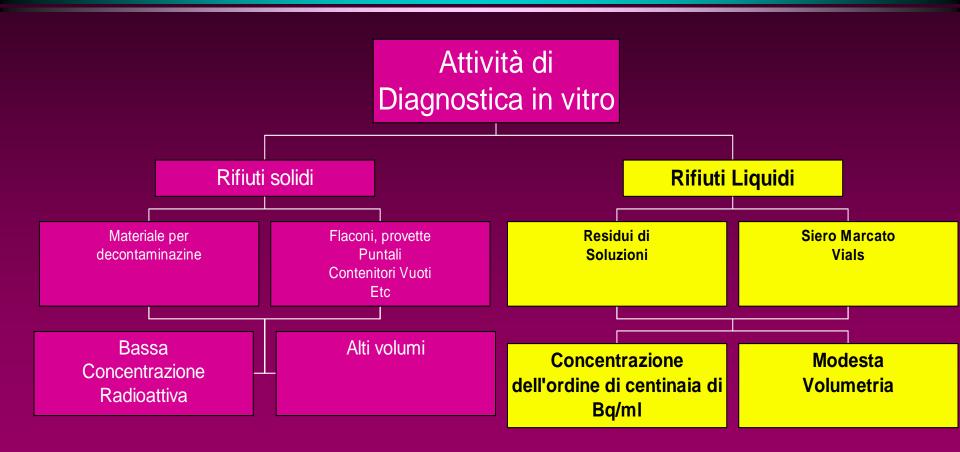
Dose equivalente massima alla tiroide di familiari per incorporazione di ¹³¹I

```
(mSv/GBq somministrato)
Adulti 4.7* 6**
Bambini 20* /
```

- * Lassmann et al.,1998
- ** Wollner et al., 1998


Rifiuti radioattivi

- l'immissione di rifiuti radioattivi in ambiente non interessa solo l'ambito territoriale del singolo produttore
- sullo stesso territorio possono contemporaneamente immettere rifiuti radioattivi numerosi utenti
- pratica da gestire nell'ambito del principio di giustificazione e ottimizzazione


Fonti di produzione dei rifiuti radioattivi

- attività diagnostica in vivo (Medicina Nucleare)
- attività terapeutica comportante la somministrazione di sostanze radioattive (Radioterapia Metabolica)
- attività diagnostica in vitro (Radioimmunologia)

Diagnostica in vivo identificazione fonti di produzione

Diagnostica in vitro identificazione fonti di produzione

Attività terapeutica identificazione fonti di produzione

RIFIUTI SOLIDI E LIQUIDI PRODOTTI DIRETTAMENTE DAL REPARTO

Stoccaggio in deposito

Conferimento smaltitore autorizzato

Immissione diretta in ambiente

Ottimizzazione e analisi del problema

Rifiuti solidi: possibili scelte operative

- immagazzinamento del materiale radioattivo in condizioni controllate fino al suo decadimento
- successivo smaltimento nell'ambiente quando siano rispettate le condizioni autorizzative e/o i limiti di non applicabilità del D.Lgs 230/95 e s.m.i.

Immagazzinamento dei rifiuti solidi

- confezionamento delle sostanze che garantisca, per tutto l'intervallo di tempo richiesto, il contenimento delle sostanze radioattive e delle matrici alle quali sono associate
- identificazione del materiale confezionato
- ispezionabilità del deposito

Caratteristiche del deposito rifiuti solidi

- dimensioni adeguate (volumetria dei rifiuti prodotti e tempi di permanenza)
- valutazione del rischio di allagamento
- decontaminabilità delle superfici, del pavimento e delle pareti
- disponibilità di rivelatori di incendio e/o di estintori a secco, disponibilità di presa d'acqua
- predisposizione di una contropendenza del pavimento
- problemi igienico sanitari

Laboratori di radioimmunologia

- inaccettabile lo smaltimento immediato di tali rifiuti come Rifiuti Solidi Urbani o tramite diretta immissione nella rete fognaria
- i rifiuti radioattivi liquidi dovranno essere confezionati in contenitori chiusi a doppio contenimento
- identificazione del materiale confezionato, con indicazione di Data di confezionamento, Operatore, Tipo di radionuclide contenuto, Attività al confezionamento, Numero progressivo

Smaltimento tramite vettore e ditta autorizzata

- radionuclidi a tempo di dimezzamento più lungo (Trizio, Cobalto 57, Carbonio 14), o quando non sia possibile tecnicamente o organizzativamente provvedere allo stoccaggio
- rifiuti e residui devono essere confezionati secondo le modalità previste per il trasporto di sostanze radioattive

Rifiuti solidi prodotti da pazienti ricoverati sottoposti ad esame scintigrafico

- materiale contaminato da 99m-Tc e altro
- valutazione a priori della quantità di materiale radioattivo prodotto che può potenzialmente essere immesso in ambiente
- valutazione dell'impegno dosimetrico legato a tale immissione
- non appare giustificato, nella maggior parte dei casi, procedere a sistemi di monitoraggio continuo di tutti i rifiuti ospedalieri in uscita

Escreti dei pazienti

- La fonte principale di rifiuti liquidi contaminati con sostanze radioattive è costituita dagli escreti dei pazienti sottoposti a procedimenti diagnostici e/o terapeutici con sostanze radioattive
- La particolare natura del rilascio in ambiente, rende praticamente impossibile risalire da determinazioni radiometriche puntuali alla valutazione dell'attività immessa in ambiente annualmente
- Stima sufficientemente cautelativa a partire da:
 - » quantità e tipologie dei radiofarmaci somministrati
 - » numero di pazienti trattati annualmente
 - » modalità di somministrazione delle sostanze radioattive e di gestione dei pazienti "caldi" (presenza o meno di vasche)
 - » frazioni escrete

Frazione escreta

$$E(t) = -\frac{dR(t)}{dt} \cdot e^{-\lambda \cdot t} \implies E_{tot}(t) = \int_{0}^{t} E(u) du = \int_{0}^{t} -\frac{dR(u)}{du} \cdot e^{-\lambda \cdot u} du = \int_{t}^{0} \frac{dR(u)}{du} \cdot e^{-\lambda \cdot u} du$$

$$E_{tot}(t) = \int_{t}^{0} \frac{d\left(\sum_{i} a_{i} \cdot e^{-\lambda_{i} \cdot u}\right)}{du} \cdot e^{-\lambda \cdot u} du = \int_{0}^{t} \left(\sum_{i} a_{i} \cdot \lambda_{i} \cdot e^{-\lambda_{i} \cdot u}\right) \cdot e^{-\lambda \cdot u} du =$$

$$= \sum_{i} a_{i} \cdot \lambda_{i} \cdot \int_{0}^{t} e^{-(\lambda_{i} + \lambda) \cdot u} du = \sum_{i} \frac{a_{i} \cdot \lambda_{i}}{(\lambda_{i} + \lambda)} (1 - e^{-(\lambda_{i} + \lambda) \cdot t})$$

$$E_{tot}(t) = \sum_{i} \left[\frac{a_{i} \cdot T_{1/2}}{T_{i,1/2} + T_{1/2}} \cdot \left(1 - e^{-\ln 2 \cdot \left(\frac{1}{T_{i,1/2}} + \frac{1}{T_{1/2}}\right) \cdot t}\right) \right]$$

Frazione Escreta

$$E_{tot}(t) = \sum_{i} \frac{a_{i} \cdot T_{1/2}}{T_{i,1/2} + T_{1/2}} \cdot \left[1 - e^{-\ln 2 \cdot (\frac{1}{T_{i,1/2}} + \frac{1}{T_{1/2}}) \cdot t} \right]$$

- L'escrezione totale dipende dal tempo di dimezzamento fisico
- L'escrezione totale dipende dal tempo di dimezzamento biologico

Escreti dei pazienti: funzioni di escrezione

		Forma Chimica		Funzione di	а	T1/2	b	T1/2	С	T1/2	Durata	Frazione escreta	Frazione	Riferimento Bibliografico
e Fisi	sico [h]		escreta	Ritenzione Total Body		biologico [h]		biologico [h]			ospedalizzazion e [h]	per via urinaria durante	totale escreta	
			per via urinaria	Bouy		Liil		ניין		[h]	e [ii]	l'ospedalizzazione	escieta	
9-mTc	6.02	DTPA	100 %	Biesponenziale	0.99	1.7	0.01	168			2	51%	78 %	ICRP 53
,		HM-PAO	80 %	Triesponenziale	0.36	48.0	0.19	1	0.08	1	2	16%	27 %	ICRP 62
,		MAG3	100 %	Triesponenziale	0.40	0.0	0.40	0	0.20	1	2	95%	97 %	ICRP 62
,		MIBI		Triesponenziale	0.70	24.0	0.14	7	0.15	1	2	4%	33 %	ICRP 62
		MDP (Fosfonato)	100 %	Triesponenziale	0.30	0.5	0.30	2	0.40	72	2	41%	53 %	ICRP 53
		DMSA	100 %	Triesponenziale	0.25	2.0	0.25	43	0.50	∞	2	12%	22 %	ICRP 53
	6.02	WBC	100 %	Monoesponenziale	1.00	∞					2	0%	0 %	ICRP 53
	6.02	Pertecnetato	30 %	Triesponenziale	0.77	38.4	0.19	89	0.04	528	2	1%	12 %	Health.Phys. Vol.12,1425-1435,1966
	6.02	Fibrinogeno	100 %	Monoesponenziale	1.00	96					2	1%	6 %	ICRP 53
	6.02	Colloide	100 %	Monoesponenziale	1.00	∞					2	0%	0 %	ICRP 53
9-mTc (6.02	DTPA Intratecale	100 %	Monoesponenziale	1.00	7.7					2	15%	44 %	ICRP 53
9-mTc (6.02	RBC	100 %	Monoesponenziale	1.00	60					2	2%	9 %	ICRP 53
9-mTc (6.02	MAA	100 %	Biesponenziale	0.85	6.0	0.15	72	0.00		2	16%	44 %	ICRP 53
31-1 1	192.96	Ioduro	100 %	Monoesponenziale	1.00	20.0					3	10%	91 %	Barrington 1996 (Tiroide ablata, Diagnostica)
11-In 6	67.31	Platelets	100 %	Biesponenziale	0.30	48	0.70	1680			2	1%	20 %	ICRP 53
11-In 6	67.31	Bleomicina	100 %	Biesponenziale	0.30	48	0.70	1680			2	1%	20 %	ICRP 53
01-TI 7	73.06	Cloruro	20 %	Biesponenziale	0.63	168	0.37	672			2	0%	23 %	ICRP 53
67-Ga	78	Citrato	91 %	Biesponenziale	0.17	30	0.83	612			2	1%	22 %	ICRP 53
9-Fe 10	068.24	Ferro Cloruro	100 %	Monoesponenziale	1.00	48000					2	0%	2 %	ICRP 54
5-Se 28	872.80	Colesterolo	100 %	Triesponenziale	0.50	120.0	0.25	720	0.25	6720	2	1%	75 %	ICRP 53
1-Cr 6	664.90	Sodio Cromato	100 %	Triesponenziale	0.30	8.0	0.30	240	0.40	3840	2	5%	58 %	ICRP 53
7-Co 65	522.48	Vitamina B12	100 %	Biesponenziale	0.10	24	0.90	12000			2	1%	42 %	ICRP 53
8-Co 16	698.72	Vitamina B12	100 %	Biesponenziale	0.10	24	0.90	12000			2	1%	21 %	ICRP 53
23-I 1	13.21	MIBG	100 %	Triesponenziale	0.70	6.0	-0.04	278	0.34	2784	2	14%	48 %	ICRP 53
31-I 1º	192.96	loduro	100 %	Monoesponenziale	1.00	20.0					96	88%	91 %	Barrington 1996 (Tiroide ablata, Terapia)
31-l 1 ⁴	192.96	Ioduro	100 %	Triesponenziale	0.14	1.0	0.18	14	0.68	2784	6	18%	35 %	Ipertiroidismo, Kaul et al, 1973
	46.70	EDTMP	100 %								6	20%	100 %	*
	90.64	HEDP/Colloide	100 %								6	47%	66 %	*
	342.72	Fosfato/Colloide	100 %	Triesponenziale	0.14	12.0	0.14	48	0.42	456	6	6%	44 %	ICRP 53
	1212	Cloruro	80 %	Triesponenziale	0.73	72	0.10	1056	0.17	96000	6	3%	74 %	ICRP 54
	64.00		100 %								6	20%	100 %	*
e-186 9 2-P 3- 9-Sr 1	342.72 1212	Fosfato/Colloide	100 % 80 %								6 6	6% 3%	44 % 74 %	

Escreti dei pazienti: modalità di quantificazione delle concentrazioni

- Per ogni pratica diagnostica o terapeutica va stimata la quantità totale di attività escreta dai pazienti
- Tale quantità va ripartita in un'aliquota immessa direttamente nel sistema fognario ospedaliero (quella dovuta ai pazienti ricoverati e allo svuotamento dei sistemi di contenimento), e in un'aliquota immessa nei sistemi fognari delle rispettive località di provenienza dai pazienti ambulatoriali e/o dimessi dall'ospedale al termine dell'ospedalizzazione
- Tale ripartizione può essere effettuata proporzionalmente al rapporto tra le attività somministrate ai pazienti ricoverati e le attività somministrate complessivamente
- Le concentrazioni medie su base annua possono essere quindi valutate a partire dalle attività annualmente immesse nel sistema fognario e dalla portata complessiva del sistema fognario dell'Ospedale, calcolata riferendosi ai soli collettori ospedalieri di interesse

Attività escreta dai pazienti Diagnostica

	Frazione escreta per via urinaria durante I'ospedalizzazi one	Frazione totale escreta	Attività totale somministrata [MBq/anno]	Attività totale escreta dai Pazienti [MBq/anno]	Attività intercettabile da sistemi di contenimento [MBq/anno]	Attività non intercettabile da sistemi di contenimento [MBq/anno]	Attività non intercettabile da sistemi di contenimento escreta in Ospedale [MBq/anno]	Concentrazione media al punto di immissione in ambiente su base annua [Bq/m³]	Attività non intercettabile da sistemi di contenimento escreta fuori dell'Ospedale [MBq/anno]
99m-Tc	95%	97%	3.01E+06	2.92E+06	2.86E+06	6.02E+04	1.69E+04	1.95E+04	4.33E+04
I-131	10%	91%	8.33E+04	7.58E+04	8.33E+03	6.75E+04			6.75E+04
In-111	1%	20%	9.51E+03	1.90E+03	9.51E+01	1.81E+03	5.24E+02	6.07E+02	1.28E+03
TI-201		23%	7.35E+04	1.69E+04		1.69E+04	2.03E+03	2.35E+03	1.49E+04
67-Ga	1%	22%	4.82E+04	1.06E+04	4.82E+02	1.01E+04	4.55E+03	5.27E+03	5.56E+03
59-Fe		2%	3.30E+00	6.60E-02		6.60E-02			6.60E-02
75-Se	1%	75%							
51-Cr	5%	58%	1.76E+02	1.02E+02	8.79E+00	9.32E+01	7.00E+00	8.10E+00	8.62E+01
Co-57	1%	42%	6.12E-01	2.57E-01	6.12E-03	2.51E-01			2.51E-01
Co-58	1%	21%	1.02E+00	2.14E-01	1.02E-02	2.04E-01			2.04E-01
I-123	14%	48%	2.70E+03	1.30E+03	3.78E+02	9.18E+02	4.59E+02	5.31E+02	4.59E+02

Caratteristiche impianto di smaltimento (Vasche)

- valutazione della volumetria e del frazionamento dell'impianto
- riduzione al minimo della necessità di interventi diretti
- sistema di controllo in tempo reale del suo funzionamento
- catino di contenimento
- possibilità di monitorare il contenuto delle vasche prima dello scarico
- per impianti dedicati al contenimento di 131-l segnalazione remota
- per impianti dedicati al contenimento di 131-l dovrà essere valutata e limitata la possibilità di evaporazioni anomale di iodio radioattivo

Dimensionamento impianto di smaltimento (Vasche)

Obiettivo di progetto: 1 Bq/g

$$\frac{dA_i}{dt} = Q_i - \lambda_i A_i(t)$$

Q_i = Quantità del radionuclide i-esimo immesso settimanalmente nel sistema in uso [Bq/settimana]

A_i(t)= Attività del radionuclide i-esimo contenuta nella vasca in uso al tempo t

 λ_i = Costante di decadimento del radionuclide i-esimo

Nell'ipotesi che Q_i sia costante nel tempo e con la condizione al contorno che al tempo t=0, A_i =0 la soluzione della 3 risulta essere:

$$A_{i}(t) = \frac{Q_{i}}{\lambda_{i}} \times \left(1 - e^{-\lambda_{i} \times t}\right)$$

Dimensionamento impianto di smaltimento (Vasche)

- L'attività e la concentrazione radioattiva al momento dello svuotamento risultano quindi calcolabili sulla base dei seguenti elementi:
 - » la legge fondamentale che regola la cinetica dei decadimenti radioattivi
 - » un tempo di permanenza dei liquami determinabile sulla base di una produzione di liquami contaminati pari a circa 0.025 m³/paziente per i reparti di diagnostica e di circa 0.1 m³/giorno/paziente per il reparto di degenza

Valutazione della dose assorbita dalla popolazione

- La valutazione della dose assorbita dalla popolazione a seguito di rilascio in ambiente di sostanze radioattive implica la conoscenza di numerosi parametri ambientali il cui dettaglio condiziona il livello di accuratezza dei risultati ottenuti.
- In maniera più pragmatica è però possibile seguire la via indicata dall'N.C.R.P. al fine di valutare conservativamente gli ordini di grandezza delle dosi assorbite dalla popolazione e la conseguente opportunità di intraprendere provvedimenti nel caso in cui l'impatto dosimetrico dovuto all'immissione di radiocontaminanti sia non accettabile

NCRP 123

- E' possibile utilizzare dei fattori di screening (S.F.) per ogni via di immissione delle sostanze radioattive in ambiente.
- La quantificazione di tali fattori di screening è il risultato dell'applicazione di modelli sempre più complessi che tengono conto di tutte le vie critiche di ritorno all'uomo
- la loro funzione principale è di consentire un confronto tra i risultati attraverso il loro utilizzo e un vincolo dosimetrico e in questo modo permettere di effettuare una valutazione immediata dell'entità del problema

NCRP 123

I modelli adottati per calcolare gli S.F. partono da ipotesi estremamente conservative a tali da portare a risultati, in termini dosimetrici, che possono essere sovrastimati fino ad un ordine di grandezza

Valutazione del "carico di lavoro" ai fini della stima della quantità di sostanze radioattive immesse in ambiente

Attività	terapeutica					
Isotopo	Pazienti totali	Pazienti ricoverati	Pazienti ambulatoriali	Attività totale somministrata annualmente (MBq)	Attività somministrata annualmente a pazienti ricoverati (MBq)	Attività somministrata annualmente a pazienti ambulatoriali (MBq)
131-I	400	400	0	1850000	1850000	0
89-Sr	50	5	45	7400	740	6660
32-P	10	2	8	1500	300	1200

Attività diagnostica "in vivo"

Isotopo	Pazienti totali	Pazienti ricoverati	Pazienti ambulatoriali	Attività totale somministrata annualmente (MBq)	Attività somministrata annualmente a pazienti ricoverati (MBq)	Attività somministrata annualmente a pazienti ambulatoriali (MBq)
131-I	10	2	8	 1850	370	1480
111-In	200	50	150	10000	2500	7500
201-TI	1000	200	800	90000	18000	72000
67-Ga	300	50	250	45000	7500	37500
59-Fe	10	2	8	10	2	8
51-Cr	150	10	140	150	10	140
57-Co	50	5	45	50	5	45
58-Co	50	5	45	50	5	45
123-I	100	10	90	15000	1500	13500
99m-Tc	6000	2000	4000	3000000	1000000	2000000

Stima della quantità di sostanze radioattive immesse in ambiente

Attività terapeutica

Isotopo		Frazione escreta con la prima minzione	Frazione totale escreta	Attività annualmente immessa in ambiente in assenza di sistemi di contenimento (MBq)	Attività annualmente immessa in ambiente in presenza di sistemi di contenimento (MBq)	Massimo risparmio operabile dai dispositivi di contenimento
131-I	*	90%	91%	1683500	18500	99%
32-P		2%	45%	3330	3182	4%
89-Sr		3%	75%	1125	1080	4%

^{*} Frazione escreta dopo 96 ore di ospedalizzazione in un reparto di degenza protetta

Attività diagnostica

Isotopo	Frazione escreta con la prima minzione	Frazione totale escreta	Attività annualmente immessa in ambiente in assenza di sistemi di contenimento (MBq)	Attività annualmente immessa in ambiente in presenza di sistemi di contenimento (MBq)	Massimo risparmio operabile dai dispositivi di contenimento
131-I	15%	91%	1684	1406	17%
111-ln	1%	20%	2000	1900	5%
201-TI	0.1 %	25%	22500	22410	0%
67-Ga	1%	25%	11250	10800	4%
59-Fe	0%	2%	0.2	0.2	0%
51-Cr	5%	60%	90	82.5	8%
57-Co	1%	45%	23	22	4%
58-Co	1%	25%	13	12	8%
123-I	14%	50%	7500	5400	28%
99m-Tc	51%	78%	2340000	810000	65%

Valutazione dell'impatto dosimetrico sulla popolazione dovuto all'immissione in ambiente di sostanze radioattive

I Caso: Immissione di radiocontaminanti in acque superficiali (fiume)

Dinamica dell'immissione:

Dal sistema fognario dell'Ospedale al sistema fognario cittadino e quindi in acque superficiali destinate all'irrigazione.

Assenza di sistemi di contenimento degli escreti dei pazienti sia per attività diagnostica che terapeutica.

La concentrazione dei liquami al punto di immissione nel fiume è posta pari a quella del punto di immissione nel sistema fognario. Prelievo di acque superficiali destinate all'irrigazione sull'argine opposto a valle rispetto al punto immissione.

Prelievo di acque superficiali destinate all'irrigazione sullo stesso argine in condizioni di completo mescolamento.

Condizioni al contorno:	
Larghezza del corso d'acqua (m):	20
Portata del corso d'acqua (m³/s):	4
Portata media del corso d'acqua negli ultimi 30 anni (m³/s):	1.3
Larghezza media del corso d'acqua negli ultimi 30 anni (m):	12
Profondità media del corso d'acqua negli ultimi 30 anni (m):	0.8
Velocità media calcolata sulla portata media degli ultimi 30 anni (m/s):	0.1
Distanza del punto di prelievo delle acque superficiali (m) in condizioni di completo mescolamento sullo stesso argine:	540

Attività terapo Isotopo	Attività immessa in ambiente (Bq/s)	Concentrazione media nelle condizioni di completo mescolamento (Bq/m³)	Coefficiente S.F. _(a.s.) [Sv/Bq/m ³]	Dose efficace derivante (μSν)
131-l	53383	41064	8.6E-08	3532
32-P	106	82	8.2E-07	67
89-Sr	36	28	1.3E-08	0.4

Isotopo	Attività immessa in ambiente (Bq/s)	Concentrazione media nelle condizioni di completo mescolamento (Bq/m³)	Coefficiente S.F. _(a.s.) [Sv/Bq/m ³]	Dose efficace derivante (μSv)
131-l	53	41	8.6E-08	3.5
111-ln	63	48	8.4E-09	0.4
201-TI	713	548	1.5E-09	0.8
67-Ga	357	275	1.1E-09	0.3
59-Fe	0.01	0.01	7.4E-08	< 0.1
51-Cr	3	2	3.7E-10	< 0.1
57-Co	0.7	1	8.6E-09	< 0.1
58-Co	0.4	0	1.8E-08	< 0.1
123-I	238	183	2.2E-10	< 0.1
99m-Tc	74201	57078	3.3E-11	1.9
			Tatala	. 7

Valutazione dell'impatto dosimetrico sulla popolazione dovuto all'immissione in ambiente di sostanze radioattive

Il Caso: Immissione di in mare

Dinamica

dell'immissione:

Dal sistema fognario dell'Ospedale al mare.

Condizioni al contorno:

Profondità del punto di immissione (m):

Distanza del punto di immissione (m) dal primo punto utile per la pesca (condizioni di completo mescolamento): 10 Fattore di dispersione F_{svd} (s m²):

Attività terapeutica

T to the total to				
Isotopo	Attività immessa in ambiente (Bq/s)	Concentrazione media nelle condizioni di completo mescolamento (Bq/m³)	Coefficiente S.F. _(mare) [Sv/Bq/m ³]	Dose efficace derivante (μSv)
131-l	53383	10677	6.2E-09	66
32-P	106	21	6.4E-07	13
89-Sr	36	7	2.7E-10	< 0.1
			Totale	< 79 7

Attività diagnostica

Isotopo	Attività immessa in ambiente (Bq/s)	Concentrazione media nelle condizioni di completo mescolamento (Bq/m³)	Coefficiente S.F. _(mare) [Sv/Bq/m ³]	Dose efficace derivante (μSv)
131-l	53	11	6.2E-09	< 0.1
111-ln	63	13	1.5E-08	< 0.2
201-TI	713	143	2.6E-09	0.4
67-Ga	357	71	2.2E-09	0.2
59-Fe	0.01	0.002	3.3E-07	< 0.1
51-Cr	3	1	3.2E-09	< 0.1
57-Co	0.73	0.1	1.3E-07	< 0.1
58-Co	0.40	0.1	2.2E-07	< 0.1
123-I	238	48	3.0E-11	< 0.1
99m-Tc	74201	14840	2.0E-11	0.3
			Tatala	. 4.7

Totale < 1.

Valutazione dell'impatto dosimetrico sulla popolazione dovuto all'immissione in ambiente di sostanze radioattive

Il Caso: Immissione di in mare

Dinamica

dell'immissione:

Dal sistema fognario dell'Ospedale al mare.

Condizioni al contorno:

Profondità del punto di immissione (m):

Distanza del punto di immissione (m) dal primo punto utile per la pesca (condizioni di completo mescolamento): 105 Fattore di dispersione F_{svd} (s m⁻²):

Attività terapeutica

Isotopo	Attività immessa in ambiente (Bq/s)	Concentrazione media nelle condizioni di completo mescolamento (Bq/m³)	Coefficiente S.F. _(mare) [Sv/Bq/m ³]	Dose efficace derivante (μSv)
131-l	53383	10677	6.2E-09	66
32-P	106	21	6.4E-07	13
89-Sr	36	7	2.7E-10	< 0.1
			Totale	< 79.7

Attività diagnostica

Isotopo	Attività immessa in ambiente (Bq/s)	Concentrazione media nelle condizioni di completo mescolamento (Bq/m³)	Coefficiente S.F. _(mare) [Sv/Bq/m ³]	Dose efficace derivante (μSv)
131-l	53	11	6.2E-09	< 0.1
111-ln	63	13	1.5E-08	< 0.2
201-TI	713	143	2.6E-09	0.4
67-Ga	357	71	2.2E-09	0.2
59-Fe	0.01	0.002	3.3E-07	< 0.1
51-Cr	3	1	3.2E-09	< 0.1
57-Co	0.73	0.1	1.3E-07	< 0.1
58-Co	0.40	0.1	2.2E-07	< 0.1
123-I	238	48	3.0E-11	< 0.1
99m-Tc	74201	14840	2.0E-11	0.3
			Totale	< 1.7

Escreti dei pazienti: elementi utili per una scelta motivata di azioni da intraprendere

- una frazione significativa degli esami di diagnostica in vivo viene eseguita su pazienti ambulatoriali
- i pazienti degenti sono generalmente distribuiti nei vari Reparti degli Ospedali, insieme ai pazienti non portatori di radioattività
- realizzazione di un sistema di vasche di raccolta, collegate con i servizi igienici destinati ai pazienti "caldi"
 - scelta giustificata nel caso di trattamenti terapeutici con 131-l presso reparti di degenza protetta
 - » dovrebbe essere valutata, nell'ambito del principio di ottimizzazione, per i servizi di diagnostica in vivo

Valutazioni in condizioni di emergenza (art. 115 Ter)

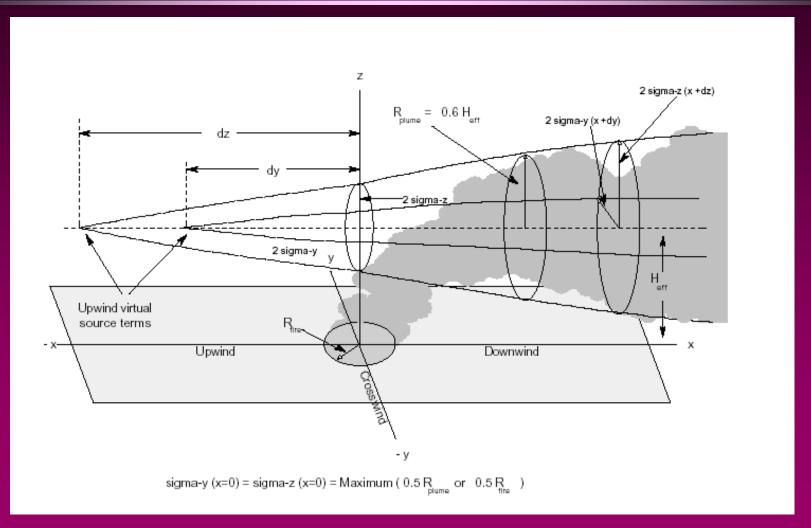
- Definizioni delle ipotesi di partenza:
 - l'incendio coinvolge la camera calda e si propaga in maniera incontrollata nel reparto

Generalità

- La descrizione matematica del comportamento di sostanze pericolose rilasciate in atmosfera comporta la necessità di conoscenza di un numero elevato di parametri in grado di caratterizzare il termine sorgente, le condizioni meteorologiche al momento del rilascio, e tutti gli elementi che possano modificare le condizioni del trasporto (presenza di edifici, particolari conformazioni del terreno etc)
- la precisione ed il dettaglio di tali conoscenze determina inevitabilmente l'accuratezza delle conclusioni e dei risultati cui l'applicazione del modello scelto porta.
- Il tutto evidentemente si complica se il rilascio è associato alle condizioni relative ad un incendio

- http://www.llnl.gov/nai/technologies/hotspot/
- fornisce un'approssimazione del primo ordine degli effetti associati al rilascio short term in atmosfera di materiale radioattivo (rilascio di durata inferiore alle 24 ore)
- 4 moduli (Plume, Explosion, Fire, Resuspension) che stimano l'impatto radiologico dovuto a rilasci continui o a puff.
- La deviazione standard relativa ai risultati dosimetrici ottenibili utilizzando il codice in questione è di un fattore compreso tra 3 e 5

- Il modello (ben documentato) tiene conto di
 - » della frazione AF della quantità di sostanze radioattive coinvolto nell'incendio che è rilasciata in atmosfera
 - » della frazione RF della quantità di sostanze radioattive dispersa in atmosfera che è respirabile in quanto caratterizzata da una AMAD inferiore a 10 µm
 - » della frazione del rilascio respirabile pari al prodotto AF x RF; tale frazione presenta una velocità di deposizione di 0.03 cm/s ed è utilizzata per determinare l'inalazione, l'irradiazione dal suolo e la dose da immersione nella nube

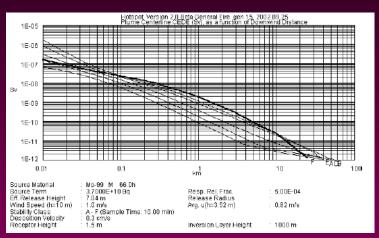

- » della frazione del rilascio non respirabile in quanto caratterizzata da un AMAD maggiore di 10 μm; tale frazione presenta una velocità di deposizione di 8 cm/s ed è utilizzata per determinare il contributo all'irradiazione dal suolo e alla dose da immersione nella nube dovuto alla componente non respirabile
- » Tutte le stime dosimetriche, inoltre, vengono condotte nell'ambito dei modelli dosimetrici e metabolici successivi alle raccomandazioni della ICRP 60 e 70.

il modello gaussiano utilizzato da HOT SPOT è descritto dalla seguente equazioni:

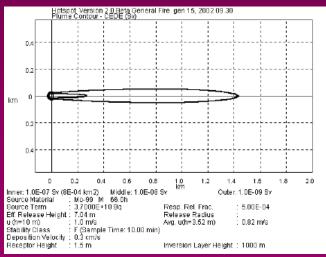
$$C(x, y, z, H) = \frac{Q}{2\pi\sigma_y\sigma_z u} \exp\left[-\frac{1}{2}\left(\frac{y}{\sigma_y}\right)^2\right] \left\{ \exp\left[-\frac{1}{2}\left(\frac{z-H}{\sigma_z}\right)^2\right] + \exp\left[-\frac{1}{2}\left(\frac{z+H}{\sigma_z}\right)^2\right] \right\} \exp\left[-\frac{\lambda x}{u}\right]$$

In caso di inversione termica e nel caso in cui σ_z superi l'altezza di inversione termica il modello utilizza la seguente equazione:

$$C(x,y,z,H) = \frac{Q}{\sqrt{2\pi}\sigma_y Lu} \exp \left[-\frac{1}{2} \left(\frac{y}{\sigma_y} \right)^2 \right] \exp \left[-\frac{\lambda x}{u} \right] .$$


Input del modello hot spot


Materiale radioattivo	Mo-99 M, $T_{1/2} = 66 \text{ h}$
Attività	3.70E+10
Frazione AF	1.00E-02
Frazione RF	5.00E-02
Frazione respirabile	5.00E-04
Raggio dell'incendio (m)	15
Altezza della nube (m)	10
Altezza del rilascio (m)	0
Effettiva altezza del rilascio (m)	7.04
Velocità del vento (m/s)	1
Velocità del vento all'altezza efficace (m/s)	0.82
Classe di stabilità	F
Altezza dell'inversione termica (m)	1000


Output del modello hot spot

Dista nza	Dose efficace impegnata	Concentrazione integrata (Bq x	suolo	Irradiazione dal suolo (Sv/h)	Tempo di arrivo
(km)	(Sv)	s)/m³	(kBq/m²)		(hh:mm)
0.01	1.60E-07	7.70E+04	1.60E+03	1.00E-06	<00:01
0.02	8.20E-08	7.30E+04	6.90E+02	4.40E-07	<00:01
0.03	5.70E-08	7.00E+04	4.10E+02	2.70E-07	<00:01
0.05	3.80E-08	6.40E+04	2.10E+02	1.40E-07	00.01
0.1	2.30E-08	5.20E+04	7.90E+01	5.10E-08	00.02
0.2	1.30E-08	3.60E+04	2.60E+01	1.70E-08	00.04
0.5	4.60E-09	1.50E+04	2.90E-01	1.80E-10	00.10
0.7	3.00E-09	9.80E+03	4.70E-02	3.00E-11	00.14
8.0	2.50E-09	8.20E+03	3.10E-02	2.00E-11	00.16
0.9	2.10E-09	7.00E+03	2.30E-02	1.50E-11	00.18
1	1.80E-09	6.00E+03	1.90E-02	1.20E-11	00.20
2	5.60E-10	1.80E+03	5.50E-03	3.50E-12	00.40
4	1.50E-10	4.90E+02	1.50E-03	9.40E-13	01.20
6	6.40E-11	2.10E+02	6.30E-04	4.00E-13	02.01
8	3.50E-11	1.20E+02	3.50E-04	2.20E-13	02.41
10	2.30E-11	7.50E+01	2.30E-04	1.40E-13	03.22
20	2.50E-12	8.40E+00	2.50E-05	1.60E-14	06.44
40	9.10E-14	3.00E-01	8.90E-07	5.70E-16	13.28
60	4.80E-15	1.60E-02	4.70E-08	3.00E-17	20.12
80	6.00E-16	2.00E-03	5.90E-09	3.80E-18	>24:00

Output del modello hot spot

